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M.S. Student: Edward Teets

This reports progress made on understanding phase changes related to

solutions which may comprise Polar Stratospheric Clouds. In particular, it is

concerned with techniques for investigating specific classes of metastability and

phase change which may be important not only in Polar Stratospheric Clouds but

in all atmospheric aerosol in general. While the lower level atmospheric aerosol

consists of mixtures of (NH4)(S04) 2, NH_HSO4, NaCI among others, there is evidence

that aerosol at PSC levels is composed of acid aerosol, either injected from

volcanic events (such as Pinatubo) or having diffused upward from the lower

atmosphere. In particular, sulfuric acid and nitric acid are known to occur at

PSC levels, and are suspected of catalyzing ozone destruction reactions by

adsorption on surfaces of crystallized particles. Such particles may result from

water absorption by the acid aerosol followed by crystallization as hydrates or

ice depending on temperature and composition.

A major question arises as to the extent to which such particles supercool

(supersaturate) prior to crystallization, the nature of the crystallization

itself in these droplets, and the nature of subsequent growth from the vapor of

crystals in the form of ice or hydrate depending on the environmental

conditions temperature or vapor pressure (relative humidity). A crucial first

question is the occurrence of solutions which supersaturate. It is well known

(see Mason, The Physics of Clouds 1970) that aerosol particles in the lower

atmosphere, of composition listed above, supersaturate substantially and
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contribute to a hysteresis in visibility. The amount and time dependence of such

metastability is ill understood, as is the dependence on insoluble aerosol

(particularly soot) to nucleate such metastable particles, (Hallett, 1991).

Identical questions occur for stratospheric clouds. The present study has

centered on two approaches:

I) The extent of supercooling (with respect to ice) and supersaturation (with

respect to hydrate) and the nature of crystal growth in acid solutions of

specific molality.

2) The nature of growth from the vapor of HNO 3 HzO crystals both on a

substrate and on a pre-existing aerosol.

i. Techniques:

The first class of experiment is designed to explore the range of

supercooling (i.e. with respect to ice phase nucleation) of acid solutions of

different concentration and temperatures down to -90°C. This was accomplished

by observing cooling curves of approximately 1 ml solution in a glass test tube

cooled slowly through the appropriate temperature of metastability. In practice,

the approximate freezing (nucleation) point of each solution is determined: the

final measurements were made for samples cooled rapidly to about 10°C above the

expected nucleation temperature, then cooled slowly (I/100°C s -I) until

nucleation occurred. Such nucleation was readily detected by a sudden increase

of solution temperature by latent heat release (Fig. i). The nucleation was

visible as ice crystals propagating through the solution. To each molal[ty

solution there is assigned an equilibrium freezing point depression (Table i, 2).

Above this temperature an inserted ice crystal will melt; below this temperature

an inserted ice crystal will grow. This defines the concept of equilibrium

freezing point, Figures 2, and 3 show the maximum supercooling obtained for
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Figure l(a) Cooling curve of I ml pure liquid water, showing

the point of maximum supercooling and equilibrium freezing temperature.
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Figure l(b). Same as Figure l(a) but, for 1 m HNO 3 solution.



Table i From Chemistry and Physics Handbook.

$9 SULFURIC .ACID, lt_S()_

MOLt:CLiLa, R 'q, LIIJftl" = s/_O_

RI:LAFIVE SPECIFIC REFRA(71I_I1-Y = 06_5

U L_O"/ h} _1 d4td *Ire Ih¢ _mc for air compounds

For Values of 000 w! ",. _olullon$ $@¢ Table I, AceUc AcId

A_,. r C, M C. I(" - ('1 In - n._ _, O S ,F,' _' _' T

h} _t I)_f I)!II 8 I g-tool I 8 I 8 I • ItV n "(" O, i, 8 g tool i q % ,_ the mmho Cm II-mol I

050 1.0OI6 1.0(334 50 0051 _.b 17

I00 1.0049 1.0067 IO0 0 IO2 9'94 9 3 3

I_O 1.0083 1.0101 151 015-4 _32 51

200 1.0116 1.0134 _ 2 0206 9914 68

2.50 1.01 .SO 1.0168 25 4 0.2_9 989.6 8 6

3.00 1.0183 1.0201 30.6 0311 9_17.8 10.4

3.50 1,0217 1.0235 358 0.365 985.9 12.3

4.00 1.0250 1.0269 41.0 0418 9t(-I 0 142

8._) 1.0284 1,0302 46.3 0472 982 I 16.1

500 1.O:118 I.O336 jl 6 0526 9_ 2 180

550 1.0352 1.0370 _,9 0580 9782 200

600 1.0385 1.0404 62 3 0635 9762 220

6.50 1.0419 1.0,438 67.7 0.691 9742 24.0

1.013" 1._f53 ( 0_72 7.[2 0.746 972_ 26.[

7.S0 1.0488 1.0S06 78.7 0.802 9701 28 I

8.(30 1.0522 1 0541 842 0.858 968.0 30_

8.50 1.0556 1.0575 89.7 0.915 965 9 32.3

900 1.0591 1.0610 953 0.972 963.8 34.4

9.50 1.062.6 . 1.0645 1009 1.029 961.6 36.6

I0.00 1.0661 1.0680 1066 1.087 959,5 38.8

t I(_ 1.0731 1.0750 118 0 1.204 955.1 43 2

1200 1.0802 10821 1296 1_22 9506 476

I 300 10874 10893. 14! 4 I 4.41 946 0 ._2 2

1400 1.0947 I O9<_. 153 3 I 563 941 4 56 8

15.00 11020 [.1039 165 3 1685 9367 61 5

16.00 1.1094 I.I 114 177.5 1.810 931.9 66.3

1700 I.II69 I.II89 1899 1936 9270 71 2

1800 I 124_ I 1265 2024 2.(Yo4 92_1 762

19.00 1.1321 1.1_41 215 I 2.193 917.0 81 2

2000 11398 I 1418 2280 2324 9119 864

2200 I 1554 1.1575 254 2 2592 _1 2 970

2400 I 1714 11735 2811 286_ 8')03 1080

2600 I 1872 11893 3087 3147 8785 II97

28(_ I 2031 I 2052 3369 3435 866,2 1320

3000 12191 I 2213 3657 3729 8534 1449

3200 12353 1.237_ 3953 4.030 8400 1582

3400 12518 1.25.10 425 6 4 339 826.2 172 I

3600 1.2685 I 2707 4567 4656 8118 I I_r34

3800 12855 I 2878 4885 4981 7'_70 201 2

4000 I 3028 13051 5211 5313 781 7 2165

4200 1320_ I 3229 _46 _6._5 "6_9 232_

4400 I 3386 1.3410 5890 6_5 74_6 2486

46.00 13570 I 3594 624 2 6365 732 8 265 4

4800 13759 13783 6604 6734 71_ 282.8

.$000 1_952 { 3977 6976 71li 6_'6 3006

_200 14149 14174 7]58 7_02 _,7"4 2 3191

5400 I 4351 i 4377 7750 7901 f_02 338 I

_600 14_5fl 14_84 8153 8312 6-44) 6 3_7:

_OG [ 4770 [ 47_/6 8:_ 7 _ 7_4 6.'0 : 377v
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h20_ I 'QOG I 5227 942 4 *4 _),_ _'" & 420 e,

_t_ ] [421 t 54.4K 986_ 100_2 _f-" 44_0

66C_) I _I_. & I.¢,674 101._6 10529 _20 46_2

68L_) I _874 I 5_132 107'44 11005 50Ft1 4_- TM

7000 t 610'_ 16134 ll274 ll4_5 4,_1 5151
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?4 (_ 16_74 I t_03 1226 5 12 505 430 v 567 3
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8000 I 7272 I 730t 1381 8 14 088 34_ a 6528

8200 174ql I 7322 1434 3 14624 314 8 egg3 4

8400 I 7693 I 7724 14862 I_, I53 283 I 715 I

8600 I 7872 1.7904 15370 15671 2_" 7480

88(_ 1.8022 1.8054 1585.9 16169 216 3 78l 9

9000 18144 [.8176 1633 0 166_0 I_1 4 816 I¢

92.00 I 8240 1.8272 1678 I 17 I10 1459 8523
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I0_.00 I 8305 I 8337 18305 18663 O0 9982

6 1.3336 0210 0ll3 00_ 1008 1.009 9_96 24.3
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, %') I 0_42 1.0360 67 2 1 067 96? 0

• no 10:170 I 038<+ 72 6 1.152 <+M 4
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Figure 2 Experimental Data for equilibrium freezing point (solid circles) and

maximum supercooling (open circles) for increasing molality and known data

from the Chemistry-Physics handbook (solid triangles) for ice-solution

equilibrium point for H2SO _.
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Figure 3. Same as Figure 2 for HNO_.
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HzSO_, HNO 3. The maximum supercooling is represented by the open circles; it is

demonstrated that there is a scatter of several degrees for each solution.

The upper points (solid circles) represents the temperature reached by the

solution within i to 5 s after the completion of the initial crystallization.

This represents the equilibrium temperature of the solution after water has been

removed by the crystallization, which enhances the concentration of the remaining

solution. In the first instance we assume that the solid is pure ice, in which

case all solute will be rejected, thus lowering the equilibrium melting point.

The solution cools through equilibrium (A Fig. 4) to become supercooled (B)

whereupon it nucleates to increase in temperature and solution concentration (C).

This process is near adiabatic as the heat transfer to the environment is small

over the times required for crystallization. Subsequently the mix cools to the

bath temperature, more ice forms and the solution becomes more concentrated (D).

E represents the ice eutectic. The amount of ice formed initially will be by

given the expression:

Te O (T) dTL(T)

where a(T) is the solution specific heat, L(T) the latent heat neither of which

are well known for the solutions under study.

A parallel study is to investigate how the crystals grow - particularly the

linear growth velocity. This is readily accomplished by making a VCR tape of the

propagation of the crystallization front after nucleating the solution at a

prescribed supercooling. The velocity is measured directly from the tape.

i0



Figure 4: Schematic of conditions for nucleation of a supercooled solution.

Arrows indicate solution temperature as it is cooled through the

equilibrium point (A), nucleates at substantial supercooling (B) grows

crystals adiabatically and concentrates (C) and finally equilibrates at

the environmental temperature (D). The diagram beyond E (the ice

eutectic) represents the conditions for a hydrate which can experience tile

same process either side of the congruent melting point (MP).

MP for Hydrate

A C

E

MOLALITY
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For these solutions the viscosity increases substantially with decrease of

temperature. At sufficiently low temperature; the growth velocity decreases

until crystallization ceases. Figure 5 shows preliminary measurements; Figure

6 shows schematic of anticipated results from cruder qualitative measurements.

This shows that a glass has formed. The results indicate that this happen for

both acids under appropriate conditions. The above arguments all apply in the

region of hydrate formation (i.e. to right of point E in Fig. 4), data in these

regions is required.

2. Diffusion Chamber

Work is underway on the design and construction of a diffusion chamber to

study aerosol and crystal growth directly (Fig. 7), temperature control will be

by circulating bath and surface heater; the upper plate moisture/acid vapor

source will be made of acid resistant stainless steel. The chamber walls will

be made of acid resistant plastic. Temperature range, -90 to -60°C. Crystals

will grow as indicated and examined by VCR; external aerosol will be injected as

appropriate and examined for phase change (optical twinkling).
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Figure 5. Measurements of ice crystal growth velocity in various molality of

H2SO 4 solutions. Degrees supercooling as for pure water below °C.
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Figure 6: Schematic of crystal growth velocity for HzSO 4 solution characterizes

the glass transition where V = zero, other than at the equilibrium melting

point at high supercooling and high molality.
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Figure 7: Diffusion chamber schematic. The walls are designed to withstand

acid; the moisture source contains appropriate acid solution. The

temperatures of top and bottom plates determine the mid temperature, the

difference determines the mid level supersaturation. Crystals grow from

the vapor on the central sting; otherwise aerosol is used from an outside

source.
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3. Initial Conclusions

The existence of the potential for substantial supercooling and a glass

transition in polar stratospheric cloud particles opens new possibilities for

surface chemistry. It would appear that the supercooled solutions might be less

effective for a chemical reactions since the molecules would be more likely to

enter the body of the solution. This will however depend on the self diffusion,

which will fall as any glass transition is approached.

Equally important is that aerosol which is cc_y_led through colder to warmer

temperatures (as opposed to aerosol which goes from warmer to colder

temperatures) will be more likely to form ice as hydrate clouds, since the glass

will crystallize as its temperature is increased. Thus the behavior of a

particle and its response to subsequent chemical reactions and cloud formation

as it cools radiatively or by mountain were lifting may be determined by its

previous history.

4. Continuing Work

Repeat the supercooling experiments with smaller volumes (mm 3) to reach

lower supercooling; extrapolate results to small aerosol values (#m)

Explore the range of glass transition and measure growth velocities i[_

greater detail, together with crystal shape.

Examine the role of impurities (soot) on maximum supercooling.

Extend studies to hydrate regions.

Complete diffusion chamber and examine vapor growth in hydrate region.
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